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Aeroelastic Stability Analysis of Hingeless Rotor Blades with
Composite Flexures
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The flap-lag-torsion coupled aeroelastic behavior of a hingeless rotor blade with composite
flexures in hovering flight has been investigated by using the finite element method. The quasi-
steady strip theory with dynamic inflow effects is used to obtain the aerodynamic loads acting
on the blade. The governing differential equations of motion undergoing moderately large
displacements and rotations are derived using the Hamilton’s principle. The flexures used in the
present model are composed of two composite plates which are rigidly attached together. The
lead-lag flexure is located inboard of the flap flexure. A mixed warping model that combines
the St. Venant torsion and the Vlasov torsion is developed to describe the twist behavior of the
composite flexure. Numerical simulations are carried out to correlate the present results with
experimental test data and also to identify the effects of structural couplings of the composite
flexures on the aeroelastic stability of the blade. The prediction results agree well with other
experimental data. The effects of elastic couplings such as pitch-flap, pitch-lag, and flap-lag
couplings on the stability behavior of the composite blades are also investigated.
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1. Introduction

Helicopters are susceptible to vibrations due
largely to the rotational environment inherent in
the vehicle for providing lift. Many studies have
been focused to design more efficient and advanced
geometry blades that lead to smaller parts, low
weight, low drag, and also easy maintenance. One
possible way to obtain this goal is the utilization
of tailored composite flexures as a means to sub-
stitute the classical mechanical hinge structures,
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such as flap and lag hinges.

Bousman (1981, 1990) investigated experiment-
ally the effects of a structural couplings on the
stability of soft-inplane hingeless rotor. The
experimental results were compared with a sim-
plified rigid blade model. The pitch-lag and pitch-
flap structural couplings were introduced by
skewing the lag and flap flexures. The flap-lag
coupling was obtained by inclining the flap and/
or lag flexures at a specific angle with respect to
the blade axis. The study showed that a combina-
tion of flap-lag and pitch-lag couplings was ben-.
eficial to blade stability. It is noted that the
flexure materials used in the study are confined to
isotropic materials and the theoretical results used
in the comparison are only for a rigid blade.

A series of analyses have been conducted to
consider the effects of elastic couplings on the
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stability behavior of composite rotors. Hong and
Chopra (1985) used a simple kinematic model of
a composite blade to examine the effects of elastic
couplings on the aeroelastic stability in hover.
Smith and Chopra (1993) extended this work to
include the nonclassical structural effects such
as transverse shear, torsion warping, and two-
dimensional inplane elasticity. Jung and Kim
(1996) introduced the shear correction factor to
account for the sectional distribution of shear and
improved the prediction of transverse shear be-
havior of a composite rotor. Tracy and Chopra
(1995) and Floros and Smith (1996) have focus-
ed on the development of torsion related warping
restraint model for the analysis of open-section
composite beams.

Tracy and Chopra (1996) investigated the aero-
elastic stability behavior of composite hingeless
rotors by using a composite flexure. The funda-
mental idea of using the composite flexure in this
study was to replace the mechanical flap and lag
hinges in the blade system. They used an effective
modulus approach in predicting structural prop-
erties of the flexure and combined the results with
UMARC (University of Maryland Advanced Ro-
torcraft Code) to perform the aeroelastic analysis
(Bir and Chopra, 1994). In the effective modulus
approach, an experimental test must be performed
a priori to obtain the stiffness properties of the
composite flexures. Generally, the procedures to
obtain the. stiffness properties by experimental
tests need much effort and take more time in
comparison with an analytical method. But, in
the analysis method, the non-classical structural
effects such as transverse shear and constrained
warping appear to be very important and must
be incorporated appropriately in the analysis,
because of the fact that the flexures are subjected
to large periodic motions, heavy inertial loads,
and cyclic torsional moments.

In the present work, the aeroelastic behavior of
a hingeless rotor blade with composite flexures is
studied. Special care is taken to improve the
helicopter rotor performance through the appro-
priate design of flexures. The flexures used in the
present model are composed of two composite
plates which are rigidly attached together. The

flexure configuration is adopted from the work
of Bousman (1990). A mixed warping model that
combines the St. Venant torsion with Vlasov
torsion is developed to describe the torsion re-
sponse of the composite flexure. The damped
element model of Lin et al. (1984) is also incor-
porated to determine the structural damping
parameters such as modal damping ratios. The
objectives of the current work are: 1) to construct
a consistent analysis method to capture the non-
classical behavior of composite flexures; and 2) to
investigate the elastic coupling behavior of com-
posite flexures on the aeroelastic stability.

2. Formulation

2.1 Composition of motion equations

Consider a hingeless helicopter blade rotating
with constant angular velocity 2, as depicted in
Fig. 1. Two Cartesian coordinate systems are used
to describe the motion of the blade: the x-y-z
undeformed coordinate system and the £—7—¢
deformed coordinate system. The deformation of
the blade in space is described by the displace-
ments %, v, w, and ¢ that are axial, lead-lag,
flap, and elastic twist deformations, respectively.

The strain-displacement relations for small
strains and moderately large deformations, up to
second order, can be obtained in terms of dis-
placement derivatives in the following form

2 72
=t/ +5+ "

+ o+ (@og + L)

Fig. 1 Rotor blade geometry and deformations
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—v"(pcos —¢sin §)
—w*(psind+¢ cos 9) (1)

where § is the total geometric pitch of the blade,
& is the twist angle, and Ar is the torsion-related
warping function.

Figure 2 shows the schematic of a hingeless rotor
blade with flap and lead-lag flexures. The flexures
used in the present model are composed of two
composite plates which are rigidly attached to-
gether. The lead-lag flexure is located inboard of
the flap flexure. The current flexure model is
similar to the flexure configuration used in the

experimental study conducted by Bousman (1990).

Structural couplings such as pitch-flap and pitch
-lag couplingsiare introduced herein by changing
the fiber orientation angles in the composite
flexures. While in the work of Bousman, the
flexures were made of isotropic materials and the
structural couplings were obtained by skewing the
flexures in a purely geometric manner. But, in
both studies, the flap-lag type of couplings could
be achieved by inclining the flexures relative to
the main blade.

The constitutive relations for the flap and the
lead-lag flexures are respectively of the following

form
(&=)=[er ez e
Oxs= Css€xs

for the flap flexure and

(GG ellsy o
O = Cssxy
Flap Flexure

Main Blade

Lead-Lag Flexure

Fig. 2 Schematic of the hingeless rotor with flexures

for the lag flexure. In the above Eq. (2), the
stiffness coefficients C;; are defined as
Cﬁ=€7ﬁ——0& for 7, j==1,6 (2¢)
Q=
C55=@ss
where the expression for the transformed reduced
stiffness matrix @y in terms of material constants
can be found in Jones (1975).
The governing differential equations of motion
for the composite hingeless blade can be derived
by using the Hamilton’s energy principle

tz

[ (6U-5T—8W.) dt=0 (3)
3t

where U, 6T, and §W; are the strain energy

variation, the kinetic energy variation, and the

external virtual work, respectively, and they are

defined as

R
sU= / [ (Guxbet Ormdem+ oxiden) dAdz
(3a)

8T = f [[ov-6VdAdx (3b)

R
W= [ (Lubtu+Lodv+Luodw+Medd) dx

(3¢)

where A is the cross-section area of the blade
and R is the blade length. In the kinetic energy
expression, V is the velocity vector for a given
point on the deformed frame and o is the mass
density of the blade. On the right-hand side of
Eq. (3¢), Ly, Lv, L, and M, are the aerodyna-
mic components in the respective motion of the
blade.

22 Warping function

The warping deformation of a beam section is
composed of the warping of the contour and the
warping of the wall relative to the contour.
(Gjelsvik, 1981). The latter is called the thickness
warping. Depending on the stiffness properties
and the geometry of the beam section, a different
combination of warping deformations needs to be
taken into account. The present flexure model has
a narrow rectangular section. Also, due to double
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symmetry nature of the section, the principal pole
and the origin coincide with the area center.
Therefore the total warping for the rectangular
solid section leads to thickness warping only. The
warping function for the section is expressed in
the form of (Ritchie and Rosinger, 1975)

e 342 )
where Gr/Gx is the ratio of shear moduli
referred to as the blade axes. On the right-hand
side of Eq.. (4), the first term represents the linear
warping and the second term represents the higer
order contribution of the thickness warping. This
equation is a purely unrestrained torsion solution
(i.e., St. Venant solution.) In case the beam is
relatively short and is constrained at either end or
both ends of the beam, local restraint effects can

be significant and should be considered appro-
priately. In order to deal with this specific case,
more general treatment of torsion problem is need-
ed and the details are presented in this section.

The governing differential equation of a gener-
al torsion problem is given by the relation

Elgop”—GJ¢'=—T (5)

where Elqg is the Vlasov warping constant, GJ is
the torsional rigidity, and T is the torque load
applied at the beam tip. The torque component
consists of two parts: Vlasov torsion T'g and St.
Venant torsion 75 an. The relative values of Ts
and T are defined as (Gjelsvik, 1981)

T |, dg/dE
Te =¥ Fgjde (©)
where
f=—;§— (6a)
p=t (6b)
o= Ll (6)

where [ is the length of the flexure. The parame-
ter 0 has a unit of length and is called the
characteristic length of a beam. The nondimen-
sional beam parameter u appeared in Eq. (6¢c) is
crucial in describing the magnitude of warping
and depends on the geometry, boundary condi-

tions, and stiffness properties of the beam. For
composite beams with rectangular cross-section
having width b and thickness #, the Vlasov
warping stiffness and the torsional rigidity are
obtained respectively as (Bauld and Tzeng, 1984)

t2 b2

Elge= f Cun’s*dyds
—t/2 -b/2
ti2 b/ (7)
GI=/[ [ 4Cus*dnds
—t/2 ~bi2

where Cy; and Ces are defined in Eq. (2c). The
flexure model is cantilevered at its root and
warping restrained at both ends of the beam, as
depicted in Fig. 2. This boundary condition is
applicable to the present flexure models, where
the root is attached to the rotor hub and the other
end is connected to the main rotor blade.
Considering this boundary condition into the
mixed torsion equation, one can get the twist
solution as

¢=fuT (8)

where the mixed torsion flexibility, fu, is denoted
by using the St. Venant torsion flexibility fs(=
lf/ G] ) as

Fu=d [ (cosh p—1)2
" ul sinhp
The ratio of the mixed torsion flexibility to

the St. Venant one is presented in Fig. 3 as a

sih gtplfs  (9)

10

LRI

RELATIVE FLEXIBILITY, fy/ fs

~i—i-  ST. VENANT TORSION
——  VLASOV TORSION
—@- MIXED TORSION

0.0t

T T

Q.1 1 10 100
BEAM PARAMETER, |t
Fig. 3 Relative torsional flexibility of beams
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function of the beam parameter x. When g is near
unity, pure Vlasov torsion is a good approxima-
tion to the torsion solution. When y is large
compared to unity, St. Venant torsion is a good
approximation to the torsion solution. But in the
moderate values of g, the mixed torsion solution
is needed. Considering the boundary conditions
with one end fixed and both ends warping re-
strained, the twist solution for the beam under the
tip torque is obtained as

=T 5-sm(3) .
4 AR fon(£) 1]

where the first term in the brackets represents the
St. Venant solution and the second and third
terms in the brackets represent the Vlasov torsion
solution.

2.3 Finite element solution

The blade structure is discretized into a number
of beam finite elements. Each beam finite element
is composed of 15 degrees of freedom to fully
consider the extension-flap-lag-torsion coupled
behavior of the blade. Applying the finite element
method to the Hamilton’s principle (Eq. (3)),
one obtains the nonlinear finite element equations
of motion in terms of nodal degrees of freedom ¢
as

Mg+ C(q) qg+K(q)gq=F (11)

where M, C, K, and F are the global inertia,
damping, stiffness matrices and load vector, re-
spectively. The transverse shear flexibility is
omitted in the finite element equations for sim-
plicity. The nonlinear equations of motion, Eq.
(11}, are solved iteratively by using the Newton-
Raphson technique. Next, a modal coordinate
transformation based on the normal modes,
which are determined from rotating free vibration
analysis, is applied as a means of saving com-
putation time in the subsequent stability analysis.
In order to consider the low-frequency unsteady
aerodynamic effects in the stability analysis, a
dynamic inflow model by Pitt and Peters (1981)
is used. Finally, the stability analysis of the blade
is conducted from the modal flutter equations,

which are transformed to a first-order system and
solved as an algebraic eigenvalue problem (Jung
and Kim, 1996).

3. Results and Discussion

3.1 Composite flexure

The present beam finite element solutions for
the composite flexure under a tip bending load
are correlated against the detailed finite element
results using the ABAQUS. The comparison is
conducted for beams with bending-torsion coupl-
ings. The geometry and the lamination configura-
tions for the composite flexure are depicted in
Fig. 4. The flexure model is 1.2 inches long and
0.5 inches wide. The model is loaded with a tip
bending load of 10 1n~/b and is cantilevered at its
root and warping restrained at both ends. Figure
5 shows the shell finite element meshes used in the
ABAQUS calculation. In order to simulate the
warping restrained condition in the ABAQUS

Fig. 5 Two-dimensional shell finite element meshes
for the ABAQUS
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Table 1 Mechanical properties of graphite~epoxy

lamina
Property Value
E\, msi 18.85
E;, msi 1.392
ze, Gm, msi 0.696
(s, msi 0.464
Yz 0.31
o, 1b/in® 0.05672
Ply thickness, £, in 0.005
0.025
£ 0020 4 <— PRESENT /,‘1
g ~——-  SHELL
us
Q
< 0.015
)
Q
W 0.010 -
2
a
E 0.005
0.000 st T : T
0.0 10

0.2 04 06 08

SPANWISE POSITION (NONDIMENSION)

Fig. 6 Comparison of flapwise displacements under
10 in-1b tip bending load

analysis, a series of rigid elements are attached
near the beam tip, as seen in Fig. 5. Figure 6
shows the comparison results between the current
predictions and the shell finite element solutions
obtained each for flapwise displacements. The ply
lay-up for the composite beam is set to [153/05/
152]. The positive fiber angle is defined as the
right angle about the {-axis of the beam. The
materials used are CU-125 graphite-epoxy and
their mechanical properties are presented in Table
1. The detailed finite element model was compos-
ed of 200 quadrilateral shell elements including
20 rigid elements, while the present beam model
used six beam finite elements. It is seen in Fig. 6
that the present beam analysis results are in a
good agreement with those of the detailed finite
element analysis.

Figure 7 shows the bending-torsion coupled
response of the beam, which is subjected to 10 iz~
/b tip bending load. The lay-up angle for this
case is [As/03/As], where A is varied from 0° to
90°. Fairly good correlation is obtained between

Table 2 Rotor blade properties

Number of biades 2
Rotor radius, R, in 31.92
Blade chord, ¢, in 1.65
Blade airfoil NACA 23012
Hinge offset, e 0.105
Solidity ratio, ¢ 0.033
Lock number, ¥ 7.99
Rotor speed, 2, RPM 682
0.06 T T T T T
< —e—PRESENT
| P N\ --&--SHELL
\\
g 0.04 ~ -
g
E 3
b
2 o0 | -
0 1 1 H 1 1
0 15 30 45 60 75 90
PLY ANGLES [DEG]

Fig. 7 Comparison of twist deformations under 10
in-ib tip bending load

the two finite element results. The maximum error
is 7% at the fiber angle of 45°. The above analysis
results indicate that the present composite beam
model is accurate enough for use in the compre-
hensive aeroelastic analysis of hingeless helicop-
ter blades.

3.2 Isotropic hingeless rotor blade

A Froude-scaled, two-bladed hingeless blade
with a straight flap and lead-lag flexures is
investigated in this section. The model was used
in an experimental study conducted by Bousman
(1994). The flexures of the model were made of
isotropic materials and their respective centerlines
were designed to be coincident with each other.
The model rotor had stiffness in torsion to
decouple the torsion mode from other flap and
lead~lag modes. The rotor configuration and the
experimental details can be found in Bousman
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Fig. 8 Lag mode damping for hingeless blades with
metal flexures as a function of flexure incli-
nation angles

(1990) . The rotor properties used in the calcula-
tion are summarized in Table 2.

Figure 8 shows the comparison results for the
aeroelastic stability of the model blade with metal
flexures. In order to identify the stability behavior
of a blade, the lag mode damping is plotted
against the flexure inclination angles. The test
data appeared in the comparison were obtained
from Bousman (1990). The current finite element
results are denoted in solid lines, while the
experimental results and the rigid blade analysis
results of Bousman are expressed in rectangles
and dotted lines, respectively. For the present
results, ten spanwise beam finite elements includ-
ing two finite elements for each of the flexures
are used. Five normal modes (three flap and two
lag modes) are used for stability analysis. The
stiffness properties for the lead-lag and flap
flexures were determined from the equivalence
of the bending slope and twist angles between
the experimental model and the current elastic
beam model. The section properties of the main
blade and the flexures used in the calculation
are given in Table 3. These structural properties
represent a soft-inplane, Froude-scaled hingeless
biade with v¢=0.7/rev. As seen from Fig. 8, the
effect of flexure inclination is to increase the lead-
lag damping until a maximum value is reached,

—— PRESENT (FEM]
e BOUSMAN {RIGID BLADE & SPRING]
9 T BOUSMAN (EXPERIMENT)

LAG FREQUENCY, Hz

4 T T T T T

0 10 20 30 4 50 &0
FLEXURE INCLINATION, [DEG]

Fig. 9 Lag mode frequency for hingeless blades with
metal flexures as a function of flexure incli-
nation angles

which occurs at around 45 degrees. Good cor-
relation for the lead-lag damping responses
between the current predictions and the exper-
imental results is clearly seen in the plot.

Figure 9 presents the variation of lead-lag
frequencies with respect to the flexure inclination
angles. Good correlation with experiments is also
apparent through the use of the current beam
finite element approach.

3.3 Composite hingeless rotor blade

Figure 10 shows the stability results of a com-
posite hingeless blade with changing fiber orien-
tation angles. The lay-up angles for the lead-lag
and the flap flexures are and [As/(15°/—15°)/
05]s and [903/(15°/—15°)3/03])s, respectively,
which represent the chordwise bending-torsion
coupling. The lamination configuration for the
flexure was determined to represent realistic blade
properties. The baseline rotor has a soft-inplane
characteristic with a stiff torsion like the Bousman
model (Bousman, 1990). The rotating natural
frequencies for the baseline blade are respectively
obtained as: vp=1.14/rev, v;=0.66/rev, and v,=
10.2/rev. The blade structure is composed of zero
ply angles to prevent the elastic motions of the
blade from mixing with those of the composite
flexures. The stiffness properties of the blade used
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Fig. 10 Root locus plots for the pitch-lag coupled
configuration

in the calculation are given in Table 3. Six normal
modes (3 flap, 2 lag, and | torsion) were used to
perform stability analysis. It is seen in Fig. 10 that
the fiber orientation angles of the composite
flexure have substantial effects on both the lag
mode frequency and damping. The positive fiber
angles representing the negative pitch-lag cou-
pling (lag back-pitch up) show significant
stabilizing effects, while the negative fiber angles
destabilize the motion. The stability results for
fiber angles below 20 degrees in absolute values
are not presented in the plot because the frequen-
cy values become unrealistic for those angles.

In Fig. 11, the root loci of complex eigenvalues
are plotted against the fiber orientation angles for
the case of pitch-flap coupling. In this case, the
lay~up angles of the flap flexure are set to [/
(15°/—15°)3/03], while the lag flexure has a
layup of [903/(15°/—15°)3/03]s. This configura-
tion represents the flapwise bending-torsion
coupling. The effect of ply angle changes of the
flap flexures on the lag mode damping is observed
to be substantial as seen in the plot. The positive
ply angles representing the positive pitch-flap
coupling (flap up-pitch down) destabilize the lag
mode substantially as the ply angle changes. A
marginal damping value is obtained near the fiber
angle of 10 degrees. On the other hand, the nega-
tive ply angles stabilize the lag mode in some
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Fig. 11 Root locus plots for the pitch-flap coupled
configuration
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Fig. 12 Root locus plots for both the pitch-lag and
pitch-flap coupled configurations

degree with the introduction of the negative pitch-
flap coupling.

Figure 12 shows the stability results of com-
bined pitch-flap and pitch-lag coupled biades. In
this case, the ply lay~up for the flap flexure is set
to [As/(15°/—15°)3/03]s, while the lag flexure
has a layup of [/s/(15°/—15°)3/03)s. For this
configuration, the ply angles for both the flexures
vary at once. The effect of ply angle changes for
the flexures on the lag mode damping appears
quite large. Mixed results of both the pitch-flap
and pitch-lag couplings are observed in the plot.
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Fig. 13 Lag mode damping for composite blades
with pitch-flap and pitch-lag couplings as a

function of flexure inclination angles

Numerical results of the geometric flap-lag
coupling along with the pitch-flap and pitch-lag
couplings are illustrated in Fig. 13, where the
lead-lag damping values are presented as a func-
tion of flexure inclination angles for three differ-
ent flexure configurations. In all three cases,
the lay-up geometry for the flap flexure is set
to [—303/(15°/—15°)3/03]s, which results in
maximum damping for the pitch—flap coupling
alone, whereas the lay-up angles of the lead-lag
flexure vary with —60, 90 and 60 degrees. A
harmonic variation of damping is noticed with
the introduction of the flap-lag coupling. As
the flexure inclination angle reaches above 90
degrees, the variation of lead-lag damping
becomes smaller than that with the low flexure
inclination angles. At these flexure inclination
angles, the effects of flap-lag coui)ling on the lag
mode damping seem to be canceled with the
elastic bending-torsion coupling. Among the
three flexure configurations, the case with a ply
angle of 60 degrees in the lag flexure is seen to
have maximum damping at a flexure inclination
of 30 degrees.

4. Concluding Remarks

In the present work, the hover aeroelastic sta-

bility of a hingeless rotor blade with composite
flexures has been investigated by using the finite
element method. The quasi-steady strip theory
with dynamic inflow effects was used to obtain
the aerodynamic loads acting on the blade. The
governing differential equations of motion un-
dergoing moderately large displacements and
rotations were derived using the Hamilton’s prin-
ciple. A mixed warping model that combines the
St. Venant torsion with Vlasov torsion was
developed to describe the twist behavior of the
composite flexure. Based on the current work, the
following conclusions are drawn:

(1) The present beam model that takes into
account the warping restraint effect through
mixed torsion theory has been correlated success-
fully with detailed shell finite element solutions.
In addition, the aeroelastic stability results for a
Froude-scaled hingeless blade with metal flexures
are correlated well with experimental test data.

(2) The negative pitch-lag coupling (lag back-
pitch up) has a strong stabilizing effect on the
lag mode damping and the negative pitch-flap
coupling (flap up-pitch up) stabilizes the lag
motion substantially. The elastic couplings can
play a significant role on stability behavior of the
lag mode.

(3) The combined effects of geometric plus
elastic couplings, which are induced respectively
by flexure inclinations and non-zero ply angles
of the blade, appear quite significant on the
aeroelastic stability results and systematic study is
needed to obtain the best combination of the
structural couplings.
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